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LARGE-SCALE  WIND-TUNNEL TESTS OF INVERTING 

FLAPS  ON  A  STOL  UTILITY AIRCRAFT MODEL 

Terrell W. Feistel 
Ames Research Center 

and 

Joseph P. Morelli 
Aeromechanics Laboratory 

AVRADCOM Research and Technology Laboratories 

SUMMARY 

A unique inverting flap system has been investigated on a large-scale deflected slipstream 
model in the Ames 40- by  80-Foot Wind Tunnel. The term “inverting” is  used because the flaps 
pivot about a point  near  the wing trailing edge  and are retracted into  the wing contour  at a deflec- 
tion  approaching 180”. The subject  tests utilized 33% chord double-slotted flaps on a low-aspect 
ratio wing that was fully immersed in the propeller slipstream. Evaluation of the flap effectiveness is 
aided by comparisons with the results of  tests of other flap systems on  the same twin propeller, 
twin tail boom STOL utility  aircraft  model. 

No extreme  or  abrupt force or moment  increments were encountered when the  flaps were 
deflected  through a wide range, corresponding to  the complete  retraction/extension  spectrum. 
Hinge-moment information  for  the  more  important flap deflections was obtained  from  instru- 
mented flap supports and exhibited  acceptable behavior. Integral spoilers were  investigated for 
lateral  control and  were found to produce appreciable rolling moments. 

The lift and descent capability of the inverting flaps compared  very  favorably with that of 
other flap systems that have been tested on this  model, including some with much greater mechan- 
ical complexity. As expected,  the flaps caused  large nose-down pitching  moment  increments at  the 
high lift  setting; however, the trimmed characteristics are still competitive  with  those  obtained  with 
the  more complicated  flap systems. 

INTRODUCTION 

The inverting flap  concept was originated by Albert0  AlvarezCalderon (ref. l ) ,  who designed 
the flaps used in  the tests  reported  herein. “Inverting” flaps are large, chord  extending flaps that - 

pivot about a point  near  the wing trailing edge and are retracted into  the wing contour  at a deflec- 
tion  approaching  180”.  One of  the principal differences (as  elaborated in ref. 1) between inverting 
flaps and the  more common  types  of chordextending flaps is  in their  potentially simpler (and 
lighter)  method  of  mounting  and  installation, presumably requiring only a pivot and an  extensible 



cable. Other significant differences  include the  potential rapid retract  and  deployment  capabilities 
and  the wide range (0" to 180') of settings possible. 

The subject  wind-tunnel  tests were initiated to shed  light on some of the unanswered questions 
regarding the practical use of these flaps. In  particular, the potential  problems associated with  trim- 
ming such large chordextending flaps, possible undesirable aerodynamic  force  and moment  tran- 
sients  during  deployment  and  retraction of the flaps, and the magnitude of the hinge moments 
encountered, were investigated. 

DESCRIPTION OF THE MODEL 

The  model  with flaps deflected is shown mounted  in  the wind tunnel  in figure 1. It represents, 
in approximately full scale, a generalized twin propeller,  twin tail boom, deflected slipstream STOL 
utility  aircraft. A three-view sketch of the model is shown in figure 2(a). Figures -2(b)  and  2(c) 
show typical airfoil and flap cross sections, and spoiler and  end  plate  details, respectively. The flap 
and airfoil coordinates are given in table 1. Close-up photographs of the flap segments set at various 
deflections  are shown in figure 3. Further details of the model may be found  in  reference 2. 

TESTS 

Tests to determine  the longitudinal  characteristics of the model were made for flap/vane deflec- 
tions ( 6 ~  v) of  20/9.5,40/21,60/32,  120/13.5,  180/0, and 60/32 inboard - 90/37  outboard, with 
a nomina I free-stream dynamic pressure of 192  N/m2 (4 psf) and  with  nominal thrust coefficients 
of 0, 1 , 2.4,  and  4 at most of the deflections. The  data are referenced to wind axes for  the forces 
and to stability axes for  the  moments.  Except as noted  in  the "Discussion  and  Analysis" section, 
the  data are computed  about  the 25% wing  mean aerodynamic  chord  position on the wing chord 
line. The nominal Reynolds  number based on  the wing mean  aerodynamic  chord  of  2.13 m (7.0 ft) 
was  2.53X lo6. 

The  data are not corrected  for  model  support strut tares or for wind-tunnel wall effects. For 
this  support  strut  system,  experience  has shown that  the tares  are negligible for high lift configura- 
tions. As a basis of comparison for  tunnel wall effects,  a  representative  calculation was made using 
the C method  (cf. ref. 3, p. 9), in which the classical corrections  are applied to  the circulation 
portion of the lift only (after subtracting an estimate  of the reaction  lift  attributable  directly to 
thrust).  Approximate  corrections  for the assumed representative maximum performance  descent 
condition (CL = 6 at y = -lo", T i  = 2) are as follows: 

Laem 

AC = +0.07 (tail  on) M J 
2 



TABLE 1 .- INVERTING FLAP SYSTEM 

(a) Main wing airfoil ordinates in fraction of  wing chord. (Model  scale  wing chord length c = 2.13 m 
(84 in.); basic airfoil section NACA 63A-418 (a = 0.8 mod); leading-edge radius 0.0235 c on slope 
through leading edge of 0.1860.) 

Upper surface Lower surface 

- x/c 

0.0023 
.0045 
.0090 
.0209 
.0453 
.070 1 
.095 1 
.1453 
.1957 
.2463 
.2970 
.3477 
.3984 
.449 1 
.4998 
.5504 
.60 10 
.65 15 
.70 19 
.7522 
.8026 
.8525 
.87 
.88 
.89 
.90 
.9 1 

ylc 

0.0153 
.O 1 87 
.0243 
.0349 
.OS04 
.062  1 
.07  17 
.0868 
.0979 
.lo60 
.1115 
.1144 
.1148 
.1129 
.lo89 
.lo32 
.0959 
.0872 
.0772 
.0664 
.0546 
.04 15 
.0375 
.0345 
.03 15 
.0282 
.0249 

dc 
0.0077 

.o 105 

.O 160 

.029  1 

.OS47 

.0799 

.lo49 

.1547 

.2043 

.2537 

.3030 

.3523 

.40 16 

.4509 

.5002 

.54 

.55 

.5 6 

.58 

.60 

.65 

.69 

.7 1 

.73 

.75 

.80 

.85 
, .86 I Pivot points: I .87 

I Vane: .8770 I -.0101  .90 I .91 

- Y /c  

0.0131 
-.0155 
-.0195 
- .0265 
- .0360 
- .0426 
- .0478 
-.0555 
- .0607 
- .0640 
- .0656 
- .0654 
- .0636 
- .0603 
-.0557 
- .OS03 
- .0484 
- .0460 
- .0390 
- .030 1 
-.0105 

.005 1 

.O 128. 
-0 197 
.0249 
.03 19 
.0343 
.0341 
.0334 
.03  19 
.0297 
.0270 
.0240 
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TABLE 1 .- CONTINUED. 

(b) Flap  ordinates in fraction of flap chord. (Model scale flap  chord  length 0.71 m, 0.33 c (28 in.); 
leading-edge radius 0.035 cflap  on  chord line.) 

0 
.O 135 
.025 
.050 
.075 
-10 
.15 
.20 
.25 
.30 
.35 
-40 
.45 
S O  
.60 
.70 
.80 
.90 
.9 5 

1 .o 

0 
.0290 
.04  10 
.0550 
.0640 
.0701 
.0760 
.0765 
.0745 
.0690 
.0645 
.0590 
.0540 
.0490 
.0390 
.0290 
.O 190 
.0090 
.0045 

0 

0 
- .0260 
- .0345 
- .0430 
-.0495 
-.0535 
- .0600 
- .0660 
-.0715 
- .0755 
- .0780 
- .0770 
- .0735 
- .0680 
-.0548 
-.0395 
-.0235 
- .0095 
- .0040 
0 

Flap pivot point: 
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TABLE 1 .- CONCLUDED. 

(c) Vane ordinates in fraction of vane chord. (Model scale  vane  chord length 0.25 m, 0.12 c 
(1 0 in.); leadingedge radius 0.038 cVme on chord line.) 

0 
0.01  25 
.0250 
.050 
.075 
.IO 
.15 
.20 
.25 
.30 
.3 5 
.40 
.45 
S O  
.60 
.70 
.80 
.85 
.90 
.95 

1 .oo 

0 
0.0580 
.0790 
.1120 
. I  340 
.1520 
.I770 
.1990 
.1990 
.2000 
.1950 
.I810 
. I700 
.1540 
.I240 
.0940 
.0640 
.0490 
.0340 
.O 1 90 
.0040 

0 
- .0360 
- .0490 
- .0580 
- .0600 
- .0580 
-.0510 
- .0480 
- .0420 
-.0355 
- .0300 
- .0240 
-.0190 
-.0130 
- .0020 
.0090 
.O 185 
.o 190 
.O 140 
.0040 

- .0040 

Vane pivot  point: 
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It is conceded that such  corrections (for  an extreme  condition)  are not negligible. But they are 
not of such  a  magnitude as to invalidate the conclusions drawn by examining the uncorrected  data. 
The  data are  presented  in  uncorrected  form  in  order to be  directly  comparable  with the previously 
published data  for  the same and similar models  (ref.  2). Wall corrections  can be applied to the 
data using the classical method as follows: 

CD = CD + 0.0076 CL 
U U 

and,  with  the tail on 

C'= CM + 0.0175 CL 
U U 

where the  subscript u indicates  data  uncorrected  for wall effects. 

Propeller thrust was determined by taking the difference  between  longitudinal  force measure- 
ments  with  propellers  operating  and  with  propellers removed. Propeller  thrust  measurements were 
made at several propeller speeds for each of three free-stream dynamic pressures with  the  flaps 
retracted and with the model  at the angle  of attack  for  zero  lift.  The  propellers were contrarotating 
and propeller  rotation was down inboard  for all  of the tests. Details concerning the propeller design 
may  be found in reference  2. 

To  obtain  flap hinge-moment data,  the flap  positioning  links on the right wing  were fitted  with 
strain gauges. The integral spoiler was installed in the right  outboard  panel  only, as shown in fig- 
ures 2(a)  and  2(c) and  was deflected 40" from the nesting  position  for the lateral  control  effective- 
ness tests.  The  horizontal  stabilizer was pivoted at  the  top of the vertical fins and was set at several 
discreet angles  as noted.  The integral hinged elevator was set at zero  with respect to  the stabilizer 
throughout the tests. 

RESULTS 

An index to  the basic data figures is presented in table 2. The basic data are presented  without 
discussion. Figures 4 through 8 present  data  for  a range of  flap  settings, both tail  off  and tail on at 
various stabilizer settings. Figure 9 shows the  effect of  a spanwise variation in flap  deflection 
(hybrid  setting), and figure 10  presents  results  obtained with a  partially folded flap  position 

= 120"/13.5).  The  plane wing characteristics   SF/^ = 180"/0) are presented  in figure 11. 

The  effects of spoiler deflection  for roll control are shown in figure 12  for  two  flap  settings 
( 6 ~ / y  = 60/32 and 90/37). The simple spoilers tested are capable of providing more  than  adequate 
rolling moments, that are relatively invariant  with CL for  constant Ti .  

6 



TABLE 2.- INDEX TO DATA FIGURES 
" ~~ 

&F/ V 
~ 

60132 

1 
4012 1 
4012 1 
2019.5 
2019.5 
2019.5 
90137 
90137 
90137 
9012 1 
60132 I I B  
90137 011 
120113.5 
18010 
60132 

60132 

90137 

90137 

2019.5 

4012 1 
60132 
90137 

120113.5 

iHa 
". ~ 
- 

- 
+5 
-5  

-15 

+5 

+5 
- 10 

+5 
- 10 
- 10 
- 10 

+5 
+5 

- 15 

- 

- 

- 

-15 

- 10 

- 10 

+5 

I 

Remarks 

Tail off 

Tail off 

Tail off 

Tail off 

Hybrid setting 

Stored  position 
40" spoiler,  rt. wing O./B. 
(1at.direc. data) 
40" spoiler,  rt. wing  O./B. 
(long. data) 
40" spoiler, rt. wing O./B. 
(1at.-direc. data) 
40" spoiler, rt. wing  O./B. 
(long.  data) 
Flap hinge movements 
(rt.1 

aElevator  deflection  zero  with respect to stabilizer, all runs. 
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The  flap  hinge-moment data are  presented  in figure 13. The  static hinge moments  fall  within  a 
reasonable range for all flap  deflections,  indicating that  no significant  structural  problems  should be 
encountered, provided the  deployment sequence is programmed to avoid high impact loads. No 
negative (compressive) loads were detected  under  any  test  condition,  indicating  that simple exten- 
sible cables should suffice to position the flaps. 

DISCUSSION  AND  ANALYSIS 

Potential  Performance  Capabilities 

Figure 14 shows a  representative set of  polars  for  a  hypothetical STOL airplane, similar to the 
wind-tunnel  model,  with  inverting  flaps  set at  60/32.  The wind-tunnel  data have been  adjusted for  a 
trimming tail load with the c.g. set a t  0.35 c on  the  thrust  line. 

Several sets of constant-value  lines for  a wing loading  of 2394 N/m2 (50 psf)  are  superimposed 
on the basic polars in  this figure. Radiating  from the origin are  lines of constant  descent angle, 7. 
The curved dashed line  from the .oiigin  represents  a sink rate of 6.10  m/s  (20  fps), which is  a 
nominal landing gear limit  for  this type of aircraft. For reference,  horizontal lines of constant 
approach speed are shown.  The  hatched lines are approximate  boundaries of constant  “no-flare” 
landing distance’ over a 15.2-m (50-ft)  obstacle. 

A shaded circle is  superimposed to indicate  a  potentially feasible landing approach  condition 
for  a 152-m (500-ft)  landing.  This  cokesponds to an  approach speed of 50  knots (CL = 5.9)  and  a 
descent angle of approximately 10” (Co = 1.03).  The  thrust  coefficient would approximate 2.0 
(approximately 800 total S H P  (59,656. W)), and the angle of  attack would approximate  15” 
(nose-up attitude of 5”) for  the  hypothetical STOL airplane.  The  approach  rate  of sink in this 
condition would be approximately 4.5 m/s (1 5 fps). 

. Comparison With Other  Flap  Systems 

Figure 15 compares the relative descent  performance for  three  different high lift  systems:  a 
simple double-slotted  flap;  a  rotating  cylinder  flap; and the inverting flaps. All three fold into  the 
same  basic  wing contour  for cruise and have been tested in the Ames 40- by 80-Foot Wind Tunnel 
using this same  STOL utility  aircraft  model  with the same basic wing planform and propulsion 
system.  The  rotating  cylinder  flap system is the most mechanically complicated,’being  a  form  of 
mechanical boundary-layer  control,  and  is described in  reference 2. 

As a basis for  comparison (assuming a 2394  N/m2 (50 psf) wing loading throughout),  a  repre- 
sentative maximum usable descent  condition is shown for each  flap  system.  The  descent angle of 

* The hypothetical  “no-flare”  landing  distances are  based on a  straight approach  path over  a 15.2-m  (50-ft)  obstacle to touch- 
down,  followed  by a constant 0.5 g  linear deceleration to  stop. They are meant  only  as a guide to potential  maximum  performance 
STOL landing capability,  which can be  easily  superimposed on the polar plot.  The  “no-flare” landing distances, as calculated, corre- 
spond very closely to flight-test data for  actual “half-flare”  landings in current generation STOL aircraft, as shown in reference 4; 
they serve, therefore,  as a  valid basis  for  comparison. 
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attack  is  arbitrarily  chosen as 10" below the angle of  attack  for maximum lift. Shown superimposed 
are the  constant, no-flare landing distance lines introduced  in the previous figure. The  rotating 
cylinder  flap and the inverting  flap  are seen to be quite evenly matched at  a descent angle  of 
approximately 13" to 14",  corresponding to a  theoretical "no-flare" landing distance of about 
122  m  (400  ft) over a 15.2-m (50-ft)  obstacle.  The  double-slotted  flap system (with  much less 
chord  extension) has about one-half this maximum descent  capability,  with  a  descent angle  of 
7" to 8", corresponding to a  distance  of  about 183  m  (600 ft). 

Summary of Longitudinal  Data  for  a Range  of Flap  Settings 

Figure  16(a)  summarizes,  for T i  = 1 .O, longitudinal data  (at iH = +5")  covering the complete 
range of  flap  settings tested..It can  be seen that  no extremely  abrupt  force or moment changes are 
encountered  in going from the 180"  folded  position to  one of the lifting  positions (20" to 90") 
and back again.2 Figure  16(b) shows, for  reference,  a  pitching  moment  plot of the same data 
recomputed  with the moment  reference  located at 0.25  Flongitudinally  but,  more  appropriately, 
on  the  thrust line  instead  of  on the wing chord. It will be noticed that some of the pitching  moment 
curves have their  positions  shifted  with respect to each other,  but  no large effects are involved. 

Longitudinal  Stability and  Trim Considerations 

In order to evaluate  more easily the longitudinal  stability and trim  considerations involved  in 
using such highly effective  flaps, the  data have been recomputed  with  respect to a c.g. on  the  thrust 
line  at the 0.35 c point.  This is a  more  representative  location  for  a  deflected slipstream STOL 
aircraft. 

Figure 17(a) is a  summary  plot  with the moment  reference  at 0.35 c on  the  thrust axis. It 
shows the pitching  moment curves for  the complete range of flap settings  with T i  = 1 and iH = +5". 
(Data were  available for all flap  settings  at iH = +So.  More nose-up trim is, of course, available at  the 
more negative stabilizer  settings.) It can be  seen that, except  for the 6 ~ =  120" transition  position, 
all flap  settings  exhibit positive or neutral  stability  throughout the usable angle-of-attack range for 
these  conditions. 

To  facilitate analyses with  reference to this c.g. location, figures 17(b)  through  17(e) show 
representative  pitching-moment  characteristics  for flap deflections  of 60/32 (iH = -So),  90/37 
(iH = -lo"),  60/32 inboard - 90/37  outboard (iH= -lo"), and  20/9.5 ( i ~ =  -lo"), covering a wide 
range  of thrust  coefficients  with the reference at 0.35 c on  the  thrust axis. Figure 17(0 shows 
representative tail-off pitching-moment  data  about  this  reference at T,' = 2.4 for  three  flap 
settings: 60/32,90/37, and  20/9.5. 

It is obvious that  the horizontal tail used on the wind-tunnel  model was not adequate to trim 
these  flaps at  their  most  effective settings. In fact,  it was far  from  optimum  for  a high-performance 
STOL aircraft; it was relatively small, poorly  end  plated, and had a simple nonslotted  control 
surface  (which was not deflected for this  test). 

It is anticipated  that the SF = 120" position  would not  be used  for steadystate flight,  but  that  the  flap  would be moved 
continuously  through such transition  positions to arrive at  the  more  effective  deflections. 
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A preliminary study indicated that  the standard  horizontal  tail  of the OV-1OA aircraft would 
be  adequate  for  trimming  the  pitching  moments  produced  by the 6~ = 60/32 inverting  flap con- 
figuration  reported  herein up  to a T,‘ of 2.4, with  a maneuvering reserve capability  of about 
0.6 rad/sec2. A slightly larger horizontal tail would be required to provide adequate  trim  and 
maneuver capability up  to Ti .  = 4. 

CONCLUDING  REMARKS 

Tests have  been performed on a full-scale, twin-boom  deflected slipstream STOL utility air- 
craft  configuration  equipped  with “inverting” flaps in the Ames 40- by  80-Foot Wind Tunnel. The 
results show that  the lift and descent capability provided by these flaps compares favorably with 
that of other flap systems that have been  tested on  the same model,  including  some  with much 
greater mechanical complexity. 

In spite of a large tail-off nosedown pitching moment produced  by the inverting flaps  in the 
highest lift configurations, the trimmed  characteristics  are  competitive  with  those  obtained  from the 
more complicated flap systems. The flap hinge moments  exhibited  acceptable  behavior  throughout 
the range  of deflections  tested. 

It is believed that these flaps may have promising potential  application to  the design of rela- 
tively simple STOL utility  aircraft  with improved performance capabilities. In  addition,  they may 
merit  consideration as retrofits to existing  aircraft  with less effective flap systems. 

Ames Research Center 
National Aeronautics and  Space Administration 

Moffett  Field, Calif. 94035, February 1980 
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(a) Threequarter  rear view, 6 ~ / v =  60/32. 

Figure 1 .- Photos of model  mounted in tunnel. 
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(b)  Threequarter  front view, 6 ~ / v  = 60/32. 

Figure 1 .- Concluded. 
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Wing 
Area 
Span 
Chord 
Aspect ra t io  
Section 

Horizontal  tail 
Area 
Span 
Chord 
Aspect  rat io 
Section 
Tal I length 

right wing only 

0.86 m 
(2 .83   f t )  

(25.0 7.62 ml- f t )  

chnrd 
Wing 

16.25 m2 (175 f t2 )  
7.62 m (25.0  f t )  
2.13 m (7.0 f t )  
3.57 
63A-418 (mod.) 

5.60 m2 (60.3  f t2)  
4.43 m (14 .54   f t )  
1.26 m (4.15 f t )  
3 30 
63-216 (inv.) , 

5.65 m (18.56 f t )  

Reference 
Moment center on wing 
chord  line  at 0.25 chord 

2.83 m (9.3 f t )  ' \  
3 blades  Thrust 

*I AF-IZl /b lade  axis 

(a) Three view. 

Figure 2.- Geometry of model. 
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Vane pivot 

Vane  pivot 

(b) Typical airfoil and flap cross section and arrangement, 6 ~ / v =  60/32 and 6 ~ / v =  180/0. 

Figure 2 .- Con tinued. 
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1 .36~  

( For BF = 60") 
I. 17c 'Path of  f l ap  T.E. 

( R a d i u s = 0 . 4 l c )  

1-.0.60 c - I 

O.'36c 

( c )  Detail of spoiler and end plate  geometry, 6 ~ 1 ~  = 60/32 shown. 

Figure 2.- Concluded. 
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6 F/v= 90137 SFIv = 2019.5 

Figure 3 .- Photos of several flap deflections. 
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Figure 4.- Basic longitudinal  data, 6~,v= 60/32. 
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Figure 4.- Continued. 
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